Fixing Variables in Semidefinite Relaxations
نویسنده
چکیده
The standard technique of reduced cost fixing from linear programming is not trivially extensible to semidefinite relaxations as the corresponding Lagrange multipliers are usually not available. We propose a general technique for computing reasonable Lagrange multipliers to constraints which are not part of the problem description. Its specialization to the semidefinite {−1 1} relaxation of quadratic 0-1 programming yields an efficient routine for fixing variables. The routine offers the possibility to exploit problem structure. We extend the traditional bijective map between {0 1} and {−1 1} formulations to the constraints such that the dual variables remain the same and structural properties are preserved. In consequence the fixing routine can efficiently be applied to optimal solutions of the semidefinite {0 1} relaxation of constrained quadratic 0-1 programming, as well. We provide numerical results showing the efficacy of the approach.
منابع مشابه
Semidefinite relaxation for dominating set
‎It is a well-known fact that finding a minimum dominating set and consequently the domination number of a general graph is an NP-complete problem‎. ‎In this paper‎, ‎we first model it as a nonlinear binary optimization problem and then extract two closely related semidefinite relaxations‎. ‎For each of these relaxations‎, ‎different rounding algorithm is exp...
متن کاملApproximate maximum-likelihood estimation using semidefinite programming
We consider semidefinite relaxations of a quadratic optimization problem with polynomial constraints. This is an extension of quadratic problems with boolean variables. Such combinatorial problems can in general not be solved in polynomial time. Semidefinite relaxations has been proposed as a promising technique to give provable good bounds on certain boolean quadratic problems in polynomial ti...
متن کاملA semidefinite relaxation scheme for quadratically constrained
Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...
متن کاملOn Equivalence of Semidefinite Relaxations for Quadratic Matrix Programming
We analyze two popular semidefinite programming relaxations for quadratically constrained quadratic programs with matrix variables. These relaxations are based on vector lifting and on matrix lifting; they are of different size and expense. We prove, under mild assumptions, that these two relaxations provide equivalent bounds. Thus, our results provide a theoretical guideline for how to choose ...
متن کاملSemidefinite Ranking on Graphs
Semidefinite Ranking on Graphs Shankar Vembu, Thomas Gärtner, and Stefan Wrobel 1 Fraunhofer IAIS, Schloß Birlinghoven, 53754 Sankt Augustin, Germany 2 Department of Computer Science III, University of Bonn, Germany {shankar.vembu, thomas.gaertner, stefan.wrobel}@iais.fraunhofer.de We consider the problem of ranking the vertices of an undirected graph given some preference relation. Without inc...
متن کامل